

Cross-Platform Optical Modeling and Design with VirtualLab Fusion and Python

Abstract

Modeling and design of complex optical systems often requires the use of multiple softwares together, since a single software can hardly provide the needed functionalities for different fields under investigation. Via the standard batch mode, we demonstrate how to use Python to access the field solvers from VirtualLab Fusion and perform optical simulation with Python. Examples on rigorous grating analysis and parametric scanning are shown.

Workflow Overview

Python

- interactive access to batch mode files
- external mathematical functions and tools

Batch mode files

- execution of simulations
- optical parameters and simulation result storage

VirtualLab Fusion

- optical setup definition
- kernel simulation engine

Define Optical Setup in VirtualLab Fusion

Create Batch Mode Files

- We firstly create batch mode files for a selected optical setup.
- In the selected folder, three new files are generated
 - parameters.xml

xml file containing all parameters of the optical setup from VirtualLab

sample_batch.bat

batch file containing commands intended to be executed

- system.os

os file (VirtualLab file format) containing the original optical setup

Modify Batch File

- Open the batch file in e.g. Notepad
 - delete the output option (in this example, no subfolder)
 - and modify simulation engine (in this example, only use Grating Order Analyzer)

Execute Simulation Using Batch File

- It is recommended to execute the batch file first, as a pre-check for the complete workflow.
- After execution, a new file is generated
 - results

xml file containing the result values

• One may also open the result xml file to check the result values.

before executing batch file

Name	Туре
K GratingEfficiency	OS File
parameters	XML Document
results	XML Document
👼 sample_batch	Windows Batch File
🖌 system	OS File

after executing batch file

Execute Simulation Using Batch File

• Results in xml file

• Results in VirtualLab Fusion

Execute Simulation Using Python (via Batch)

- A basic Python function has been prepared for interacting and executing the batch file and related xml files.
- Copy VLFBatchEvaluation.py file directly to the working folder.

Name	Туре
📕pycache	File folder
GratingEfficiency.os	OS File
≼ system.os	OS File
🗋initpy	Python source file
ParameterScan1D.py	Python source file
ParameterScan2D.py	Python source file
SingleRun.py	Python source file
VLFBatchEvaluation.py	Python source file
sample_batch.bat	Windows Batch File
📄 parameters.xml	XML Document
results.xml	XML Document

Execute Simulation Using Python (via Batch)

- In this example, one can execute the PYTHON function below FunctionTest(Path, Indextobefound, Search_Parameter_ ...)
- A Python file SingleRun.py is prepared for executing the function.

Name	Туре
📕pycache	File folder
GratingEfficiency.os	OS File
≼ system.os	OS File
initpy	Python source file
ParameterScan1D.py	Python source file
ParameterScan2D.py	Python source file
SingleRun.py	Python source file
VLFBatchEvaluation.py	Python source file
sample_batch.bat	Windows Batch File
parameters.xml	XML Document
results.xml	XML Document

In this example, the -1st order efficiency is displayed after executing the function

Parameter Scanning – Varying Single Parameter

- The basic Python file can be used as a sub-function in another Python file as well.
- As an example, we demonstrate how to scanning a selected parameter in the optical setup, and to check the influence on the result.
- In this example, grating depth is varied, and the diffraction efficiency of -1st order is under investigation.

Parameter Scanning – Varying Single Parameter

• To use the example file, directly copy the Python file ParameterScan1D into the working folder, adjust the working path, and then execute it.

Parameter Scanning – Varying Multiple Parameters

- The basic PYTHON file can be applied in a flexible way.
- For example, one can vary multiple variables and make a multidimensional scan over the parameter space.
- In this example, both the grating depth and the fill factor are varied, and the diffraction efficiency of -1st order is under investigation.

Parameter Scanning 2D – Varying Multiple Parameters

• To use the example file, directly copy the Python file ParameterScan2D into the working folder, adjust the working path, and then execute it.

title	Cross-Platform Optical Modeling and Design with VirtualLab Fusion and Python
document code	CPF.0002
version	1.0
toolbox(es)	(depending on situation; Grating Toolbox used for this example)
VL version used for simulations	VirtualLab Fusion Spring Release 2019
category	Feature Use Case
further reading	- <u>Cross-Platform Optical Modeling and Design with VirtualLab Fusion and</u> <u>MATLAB</u>